Attention-based Estimation and Prediction of Human Intent to augment Haptic Glove aided Control of Robotic Hand

15 Oct 2021  ·  Muneeb Ahmed, Rajesh Kumar, Qaim Abbas, Brejesh lall, Arzad A. Kherani, Sudipto Mukherjee ·

The letter focuses on Haptic Glove (HG) based control of a Robotic Hand (RH) executing in-hand manipulation of certain objects of interest. The high dimensional motion signals in HG and RH possess intrinsic variability of kinematics resulting in difficulty to establish a direct mapping of the motion signals from HG onto the RH. An estimation mechanism is proposed to quantify the motion signal acquired from the human controller in relation to the intended goal pose of the object being held by the robotic hand. A control algorithm is presented to transform the synthesized intent at the RH and allow relocation of the object to the expected goal pose. The lag in synthesis of the intent in the presence of communication delay leads to a requirement of predicting the estimated intent. We leverage an attention-based convolutional neural network encoder to predict the trajectory of intent for a certain lookahead to compensate for the delays. The proposed methodology is evaluated across objects of different shapes, mass, and materials. We present a comparative performance of the estimation and prediction mechanisms on 5G-driven real-world robotic setup against benchmark methodologies. The test-MSE in prediction of human intent is reported to yield ~ 97.3 -98.7% improvement of accuracy in comparison to LSTM-based benchmark

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods