Estimation of Bivariate Structural Causal Models by Variational Gaussian Process Regression Under Likelihoods Parametrised by Normalising Flows

6 Sep 2021  ·  Nico Reick, Felix Wiewel, Alexander Bartler, Bin Yang ·

One major drawback of state-of-the-art artificial intelligence is its lack of explainability. One approach to solve the problem is taking causality into account. Causal mechanisms can be described by structural causal models. In this work, we propose a method for estimating bivariate structural causal models using a combination of normalising flows applied to density estimation and variational Gaussian process regression for post-nonlinear models. It facilitates causal discovery, i.e. distinguishing cause and effect, by either the independence of cause and residual or a likelihood ratio test. Our method which estimates post-nonlinear models can better explain a variety of real-world cause-effect pairs than a simple additive noise model. Though it remains difficult to exploit this benefit regarding all pairs from the T\"ubingen benchmark database, we demonstrate that combining the additive noise model approach with our method significantly enhances causal discovery.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods