Ev-Layout: A Large-scale Event-based Multi-modal Dataset for Indoor Layout Estimation and Tracking

11 Mar 2025  ·  Xucheng Guo, Yiran Shen, Xiaofang Xiao, Yuanfeng Zhou, Lin Wang ·

This paper presents Ev-Layout, a novel large-scale event-based multi-modal dataset designed for indoor layout estimation and tracking. Ev-Layout makes key contributions to the community by: Utilizing a hybrid data collection platform (with a head-mounted display and VR interface) that integrates both RGB and bio-inspired event cameras to capture indoor layouts in motion. Incorporating time-series data from inertial measurement units (IMUs) and ambient lighting conditions recorded during data collection to highlight the potential impact of motion speed and lighting on layout estimation accuracy. The dataset consists of 2.5K sequences, including over 771.3K RGB images and 10 billion event data points. Of these, 39K images are annotated with indoor layouts, enabling research in both event-based and video-based indoor layout estimation. Based on the dataset, we propose an event-based layout estimation pipeline with a novel event-temporal distribution feature module to effectively aggregate the spatio-temporal information from events. Additionally, we introduce a spatio-temporal feature fusion module that can be easily integrated into a transformer module for fusion purposes. Finally, we conduct benchmarking and extensive experiments on the Ev-Layout dataset, demonstrating that our approach significantly improves the accuracy of dynamic indoor layout estimation compared to existing event-based methods.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods