Evaluating Actuators in a Purely Information-Theory Based Reward Model

10 Apr 2018 Wojciech Skaba

AGINAO builds its cognitive engine by applying self-programming techniques to create a hierarchy of interconnected codelets - the tiny pieces of code executed on a virtual machine. These basic processing units are evaluated for their applicability and fitness with a notion of reward calculated from self-information gain of binary partitioning of the codelet's input state-space... (read more)

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet