Evaluating Nonlinear Decision Trees for Binary Classification Tasks with Other Existing Methods

25 Aug 2020  ·  Yashesh Dhebar, Sparsh Gupta, Kalyanmoy Deb ·

Classification of datasets into two or more distinct classes is an important machine learning task. Many methods are able to classify binary classification tasks with a very high accuracy on test data, but cannot provide any easily interpretable explanation for users to have a deeper understanding of reasons for the split of data into two classes. In this paper, we highlight and evaluate a recently proposed nonlinear decision tree approach with a number of commonly used classification methods on a number of datasets involving a few to a large number of features. The study reveals key issues such as effect of classification on the method's parameter values, complexity of the classifier versus achieved accuracy, and interpretability of resulting classifiers.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods