Evaluating Trade-offs in Computer Vision Between Attribute Privacy, Fairness and Utility

15 Feb 2023  ·  William Paul, Philip Mathew, Fady Alajaji, Philippe Burlina ·

This paper investigates to what degree and magnitude tradeoffs exist between utility, fairness and attribute privacy in computer vision. Regarding privacy, we look at this important problem specifically in the context of attribute inference attacks, a less addressed form of privacy. To create a variety of models with different preferences, we use adversarial methods to intervene on attributes relating to fairness and privacy. We see that that certain tradeoffs exist between fairness and utility, privacy and utility, and between privacy and fairness. The results also show that those tradeoffs and interactions are more complex and nonlinear between the three goals than intuition would suggest.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here