Evaluating Various Tokenizers for Arabic Text Classification

14 Jun 2021  ·  Zaid Alyafeai, Maged S. Al-shaibani, Mustafa Ghaleb, Irfan Ahmad ·

The first step in any NLP pipeline is to split the text into individual tokens. The most obvious and straightforward approach is to use words as tokens. However, given a large text corpus, representing all the words is not efficient in terms of vocabulary size. In the literature, many tokenization algorithms have emerged to tackle this problem by creating subwords which in turn limits the vocabulary size in a given text corpus. Most tokenization techniques are language-agnostic i.e they don't incorporate the linguistic features of a given language. Not to mention the difficulty of evaluating such techniques in practice. In this paper, we introduce three new tokenization algorithms for Arabic and compare them to three other baselines using unsupervised evaluations. In addition to that, we compare all the six algorithms by evaluating them on three supervised classification tasks which are sentiment analysis, news classification and poetry classification using six publicly available datasets. Our experiments show that none of the tokenization technique is the best choice overall and that the performance of a given tokenization algorithm depends on the size of the dataset, type of the task, and the amount of morphology that exists in the dataset. However, some tokenization techniques are better overall as compared to others on various text classification tasks.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here