Evaluation of Spectral Learning for the Identification of Hidden Markov Models

22 Jul 2015  ·  Robert Mattila, Cristian R. Rojas, Bo Wahlberg ·

Hidden Markov models have successfully been applied as models of discrete time series in many fields. Often, when applied in practice, the parameters of these models have to be estimated. The currently predominating identification methods, such as maximum-likelihood estimation and especially expectation-maximization, are iterative and prone to have problems with local minima. A non-iterative method employing a spectral subspace-like approach has recently been proposed in the machine learning literature. This paper evaluates the performance of this algorithm, and compares it to the performance of the expectation-maximization algorithm, on a number of numerical examples. We find that the performance is mixed; it successfully identifies some systems with relatively few available observations, but fails completely for some systems even when a large amount of observations is available. An open question is how this discrepancy can be explained. We provide some indications that it could be related to how well-conditioned some system parameters are.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here