Event-based visual place recognition with ensembles of temporal windows

22 May 2020  ·  Tobias Fischer, Michael Milford ·

Event cameras are bio-inspired sensors capable of providing a continuous stream of events with low latency and high dynamic range. As a single event only carries limited information about the brightness change at a particular pixel, events are commonly accumulated into spatio-temporal windows for further processing. However, the optimal window length varies depending on the scene, camera motion, the task being performed, and other factors. In this research, we develop a novel ensemble-based scheme for combining temporal windows of varying lengths that are processed in parallel. For applications where the increased computational requirements of this approach are not practical, we also introduce a new "approximate" ensemble scheme that achieves significant computational efficiencies without unduly compromising the original performance gains provided by the ensemble approach. We demonstrate our ensemble scheme on the visual place recognition (VPR) task, introducing a new Brisbane-Event-VPR dataset with annotated recordings captured using a DAVIS346 color event camera. We show that our proposed ensemble scheme significantly outperforms all the single-window baselines and conventional model-based ensembles, irrespective of the image reconstruction and feature extraction methods used in the VPR pipeline, and evaluate which ensemble combination technique performs best. These results demonstrate the significant benefits of ensemble schemes for event camera processing in the VPR domain and may have relevance to other related processes, including feature tracking, visual-inertial odometry, and steering prediction in driving.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here