EventFull: Complete and Consistent Event Relation Annotation

17 Dec 2024  ·  Alon Eirew, Eviatar Nachshoni, Aviv Slobodkin, Ido Dagan ·

Event relation detection is a fundamental NLP task, leveraged in many downstream applications, whose modeling requires datasets annotated with event relations of various types. However, systematic and complete annotation of these relations is costly and challenging, due to the quadratic number of event pairs that need to be considered. Consequently, many current event relation datasets lack systematicity and completeness. In response, we introduce \textit{EventFull}, the first tool that supports consistent, complete and efficient annotation of temporal, causal and coreference relations via a unified and synergetic process. A pilot study demonstrates that EventFull accelerates and simplifies the annotation process while yielding high inter-annotator agreement.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here