Evolution-Preserving Dense Trajectory Descriptors

14 Feb 2017Yang WangVinh TranMinh Hoai

Recently Trajectory-pooled Deep-learning Descriptors were shown to achieve state-of-the-art human action recognition results on a number of datasets. This paper improves their performance by applying rank pooling to each trajectory, encoding the temporal evolution of deep learning features computed along the trajectory... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet