Evolutionary City: Towards a Flexible, Agile and Symbiotic System

6 Nov 2023  ·  Xi Chen, Wei Hu, Jingru Yu, Ding Wang, Shengyue Yao, Yilun Lin, Fei-Yue Wang ·

Urban growth sometimes leads to rigid infrastructure that struggles to adapt to changing demand. This paper introduces a novel approach, aiming to enable cities to evolve and respond more effectively to such dynamic demand. It identifies the limitations arising from the complexity and inflexibility of existing urban systems. A framework is presented for enhancing the city's adaptability perception through advanced sensing technologies, conducting parallel simulation via graph-based techniques, and facilitating autonomous decision-making across domains through decentralized and autonomous organization and operation. Notably, a symbiotic mechanism is employed to implement these technologies practically, thereby making urban management more agile and responsive. In the case study, we explore how this approach can optimize traffic flow by adjusting lane allocations. This case not only enhances traffic efficiency but also reduces emissions. The proposed evolutionary city offers a new perspective on sustainable urban development, highliting the importance of integrated intelligence within urban systems.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here