Evolutionary Multi-Objective Optimization Framework for Mining Association Rules

20 Mar 2020 Shaik Tanveer ul Huq Vadlamani Ravi

In this paper, two multi-objective optimization frameworks in two variants (i.e., NSGA-III-ARM-V1, NSGA-III-ARM-V2; and MOEAD-ARM-V1, MOEAD-ARM-V2) are proposed to find association rules from transactional datasets. The first framework uses Non-dominated sorting genetic algorithm III (NSGA-III) and the second uses Decomposition based multi-objective evolutionary algorithm (MOEA/D) to find the association rules which are diverse, non-redundant and non-dominated (having high objective function values)... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet