Evolutionary Multitasking AUC Optimization

4 Jan 2022  ·  Chao Wang, Kai Wu, Jing Liu ·

Learning to optimize the area under the receiver operating characteristics curve (AUC) performance for imbalanced data has attracted much attention in recent years. Although there have been several methods of AUC optimization, scaling up AUC optimization is still an open issue due to its pairwise learning style. Maximizing AUC in the large-scale dataset can be considered as a non-convex and expensive problem. Inspired by the characteristic of pairwise learning, the cheap AUC optimization task with a small-scale dataset sampled from the large-scale dataset is constructed to promote the AUC accuracy of the original, large-scale, and expensive AUC optimization task. This paper develops an evolutionary multitasking framework (termed EMTAUC) to make full use of information among the constructed cheap and expensive tasks to obtain higher performance. In EMTAUC, one mission is to optimize AUC from the sampled dataset, and the other is to maximize AUC from the original dataset. Moreover, due to the cheap task containing limited knowledge, a strategy for dynamically adjusting the data structure of inexpensive tasks is proposed to introduce more knowledge into the multitasking AUC optimization environment. The performance of the proposed method is evaluated on a series of binary classification datasets. The experimental results demonstrate that EMTAUC is highly competitive to single task methods and online methods. Supplementary materials and source code implementation of EMTAUC can be accessed at https://github.com/xiaofangxd/EMTAUC.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here