Evolutionary Planning in Latent Space

23 Nov 2020  ·  Thor V. A. N. Olesen, Dennis T. T. Nguyen, Rasmus Berg Palm, Sebastian Risi ·

Planning is a powerful approach to reinforcement learning with several desirable properties. However, it requires a model of the world, which is not readily available in many real-life problems. In this paper, we propose to learn a world model that enables Evolutionary Planning in Latent Space (EPLS). We use a Variational Auto Encoder (VAE) to learn a compressed latent representation of individual observations and extend a Mixture Density Recurrent Neural Network (MDRNN) to learn a stochastic, multi-modal forward model of the world that can be used for planning. We use the Random Mutation Hill Climbing (RMHC) to find a sequence of actions that maximize expected reward in this learned model of the world. We demonstrate how to build a model of the world by bootstrapping it with rollouts from a random policy and iteratively refining it with rollouts from an increasingly accurate planning policy using the learned world model. After a few iterations of this refinement, our planning agents are better than standard model-free reinforcement learning approaches demonstrating the viability of our approach.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here