Evolving a Vector Space with any Generating Set

10 Apr 2017  ·  Richard Nock, Frank Nielsen ·

In Valiant's model of evolution, a class of representations is evolvable iff a polynomial-time process of random mutations guided by selection converges with high probability to a representation as $\epsilon$-close as desired from the optimal one, for any required $\epsilon>0$. Several previous positive results exist that can be related to evolving a vector space, but each former result imposes disproportionate representations or restrictions on (re)initialisations, distributions, performance functions and/or the mutator... In this paper, we show that all it takes to evolve a normed vector space is merely a set that generates the space. Furthermore, it takes only $\tilde{O}(1/\epsilon^2)$ steps and it is essentially stable, agnostic and handles target drifts that rival some proven in fairly restricted settings. Our algorithm can be viewed as a close relative to a popular fifty-years old gradient-free optimization method for which little is still known from the convergence standpoint: Nelder-Mead simplex method. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here