Evolving and Merging Hebbian Learning Rules: Increasing Generalization by Decreasing the Number of Rules

Generalization to out-of-distribution (OOD) circumstances after training remains a challenge for artificial agents. To improve the robustness displayed by plastic Hebbian neural networks, we evolve a set of Hebbian learning rules, where multiple connections are assigned to a single rule. Inspired by the biological phenomenon of the genomic bottleneck, we show that by allowing multiple connections in the network to share the same local learning rule, it is possible to drastically reduce the number of trainable parameters, while obtaining a more robust agent. During evolution, by iteratively using simple K-Means clustering to combine rules, our Evolve and Merge approach is able to reduce the number of trainable parameters from 61,440 to 1,920, while at the same time improving robustness, all without increasing the number of generations used. While optimization of the agents is done on a standard quadruped robot morphology, we evaluate the agents' performances on slight morphology modifications in a total of 30 unseen morphologies. Our results add to the discussion on generalization, overfitting and OOD adaptation. To create agents that can adapt to a wider array of unexpected situations, Hebbian learning combined with a regularising "genomic bottleneck" could be a promising research direction.

Results in Papers With Code
(↓ scroll down to see all results)