Evolving test instances of the Hamiltonian completion problem

5 Oct 2020  ·  Thibault Lechien, Jorik Jooken, Patrick De Causmaecker ·

Predicting and comparing algorithm performance on graph instances is challenging for multiple reasons. First, there is usually no standard set of instances to benchmark performance. Second, using existing graph generators results in a restricted spectrum of difficulty and the resulting graphs are usually not diverse enough to draw sound conclusions. That is why recent work proposes a new methodology to generate a diverse set of instances by using an evolutionary algorithm. We can then analyze the resulting graphs and get key insights into which attributes are most related to algorithm performance. We can also fill observed gaps in the instance space in order to generate graphs with previously unseen combinations of features. This methodology is applied to the instance space of the Hamiltonian completion problem using two different solvers, namely the Concorde TSP Solver and a multi-start local search algorithm.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here