Exact, Complete, and Universal Continuous-Time Worldline Monte Carlo Approach to the Statistics of Discrete Quantum Systems

24 Mar 1997  ·  N. V. Prokof'ev, B. V. Svistunov, I. S. Tupitsyn ·

We show how the worldline quantum Monte Carlo procedure, which usually relies on an artificial time discretization, can be formulated directly in continuous time, rendering the scheme exact. For an arbitrary system with discrete Hilbert space, none of the configuration update procedures contain small parameters. We find that the most effective update strategy involves the motion of worldline discontinuities (both in space and time), i.e., the evaluation of the Green's function. Being based on local updates only, our method nevertheless allows one to work with the grand canonical ensemble and non-zero winding numbers, and to calculate any dynamic correlation function as easily as expectation values of, e.g., total energy. The principles found for the update in continuous time generalize to any continuous variables in the space of discrete virtual transitions, and in principle also make it possible to simulate continuous systems exactly.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here