Exact Distribution-Free Hypothesis Tests for the Regression Function of Binary Classification via Conditional Kernel Mean Embeddings

8 Mar 2021  ·  Ambrus Tamás, Balázs Csanád Csáji ·

In this paper we suggest two statistical hypothesis tests for the regression function of binary classification based on conditional kernel mean embeddings. The regression function is a fundamental object in classification as it determines both the Bayes optimal classifier and the misclassification probabilities... A resampling based framework is presented and combined with consistent point estimators of the conditional kernel mean map, in order to construct distribution-free hypothesis tests. These tests are introduced in a flexible manner allowing us to control the exact probability of type I error for any sample size. We also prove that both proposed techniques are consistent under weak statistical assumptions, i.e., the type II error probabilities pointwise converge to zero. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here