Exact Recovery in the Hypergraph Stochastic Block Model: a Spectral Algorithm

16 Nov 2018  ·  Sam Cole, Yizhe Zhu ·

We consider the exact recovery problem in the hypergraph stochastic block model (HSBM) with $k$ blocks of equal size. More precisely, we consider a random $d$-uniform hypergraph $H$ with $n$ vertices partitioned into $k$ clusters of size $s = n / k$. Hyperedges $e$ are added independently with probability $p$ if $e$ is contained within a single cluster and $q$ otherwise, where $0 \leq q < p \leq 1$. We present a spectral algorithm which recovers the clusters exactly with high probability, given mild conditions on $n, k, p, q$, and $d$. Our algorithm is based on the adjacency matrix of $H$, which is a symmetric $n \times n$ matrix whose $(u, v)$-th entry is the number of hyperedges containing both $u$ and $v$. To the best of our knowledge, our algorithm is the first to guarantee exact recovery when the number of clusters $k=\Theta(\sqrt{n})$.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here