Exact Subspace Segmentation and Outlier Detection by Low-Rank Representation

8 Sep 2011  ·  Guangcan Liu, Huan Xu, Shuicheng Yan ·

In this work, we address the following matrix recovery problem: suppose we are given a set of data points containing two parts, one part consists of samples drawn from a union of multiple subspaces and the other part consists of outliers. We do not know which data points are outliers, or how many outliers there are... The rank and number of the subspaces are unknown either. Can we detect the outliers and segment the samples into their right subspaces, efficiently and exactly? We utilize a so-called {\em Low-Rank Representation} (LRR) method to solve this problem, and prove that under mild technical conditions, any solution to LRR exactly recovers the row space of the samples and detect the outliers as well. Since the subspace membership is provably determined by the row space, this further implies that LRR can perform exact subspace segmentation and outlier detection, in an efficient way. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here