Exactly Sparse Gaussian Variational Inference with Application to Derivative-Free Batch Nonlinear State Estimation

9 Nov 2019Timothy D. BarfootJames R. ForbesDavid Yoon

We present a Gaussian Variational Inference (GVI) technique that can be applied to large-scale nonlinear batch state estimation problems. The main contribution is to show how to fit both the mean and (inverse) covariance of a Gaussian to the posterior efficiently, by exploiting factorization of the joint likelihood of the state and data, as is common in practical problems... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet