Experimental Determination of an Extended DC Servo-Motor State Space Model: An Undergraduate Experiment

12 Jan 2020  ·  Masoud Ahmad A., Abu-Ali Mohammad, Al-Shaikhi Ali ·

State space systems and experimental system identification are essential components of control education. Early introduction of these tools to the curriculum of a control laboratory in an interconnected and accessible manner that does not over-dilute the concepts is important in two ways. First, it facilitates a student's transition to more senior and graduate level control concepts. It also provides an effective link to industrial applications. This paper provides two novel experimental procedures for directly identifying the state space model of a DC motor in an undergraduate control laboratory. The procedures do not require any specialized hardware and can be performed using standard laboratory equipment. They also do not place any simplifying assumptions on the motor's model. The first procedure is based on direct pseudo inversion of the state space model. It does not require advanced knowledge of the state space approach or signal filtering. It is easy to understand and suits a first control laboratory. The second procedure is more efficient. It is based on the Markov approach commonly used for realizing, indirectly, a state space model from an estimated transfer function. While the procedure is designed for use by undergraduate students, it requires relatively advanced knowledge in state space that makes it suitable for a second undergraduate control laboratory.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here