Explainable Recommendation: A Survey and New Perspectives

30 Apr 2018  ·  Yongfeng Zhang, Xu Chen ·

Explainable recommendation attempts to develop models that generate not only high-quality recommendations but also intuitive explanations. The explanations may either be post-hoc or directly come from an explainable model (also called interpretable or transparent model in some contexts). Explainable recommendation tries to address the problem of why: by providing explanations to users or system designers, it helps humans to understand why certain items are recommended by the algorithm, where the human can either be users or system designers. Explainable recommendation helps to improve the transparency, persuasiveness, effectiveness, trustworthiness, and satisfaction of recommendation systems. It also facilitates system designers for better system debugging. In recent years, a large number of explainable recommendation approaches -- especially model-based methods -- have been proposed and applied in real-world systems. In this survey, we provide a comprehensive review for the explainable recommendation research. We first highlight the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation on three perspectives: 1) We provide a chronological research timeline of explainable recommendation. 2) We provide a two-dimensional taxonomy to classify existing explainable recommendation research. 3) We summarize how explainable recommendation applies to different recommendation tasks. We also devote a chapter to discuss the explanation perspectives in broader IR and AI/ML research. We end the survey by discussing potential future directions to promote the explainable recommendation research area and beyond.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here