Weak and Strong Gradient Directions: Explaining Memorization, Generalization, and Hardness of Examples at Scale

16 Mar 2020  ·  Piotr Zielinski, Shankar Krishnan, Satrajit Chatterjee ·

Coherent Gradients (CGH) is a recently proposed hypothesis to explain why over-parameterized neural networks trained with gradient descent generalize well even though they have sufficient capacity to memorize the training set. The key insight of CGH is that, since the overall gradient for a single step of SGD is the sum of the per-example gradients, it is strongest in directions that reduce the loss on multiple examples if such directions exist. In this paper, we validate CGH on ResNet, Inception, and VGG models on ImageNet. Since the techniques presented in the original paper do not scale beyond toy models and datasets, we propose new methods. By posing the problem of suppressing weak gradient directions as a problem of robust mean estimation, we develop a coordinate-based median of means approach. We present two versions of this algorithm, M3, which partitions a mini-batch into 3 groups and computes the median, and a more efficient version RM3, which reuses gradients from previous two time steps to compute the median. Since they suppress weak gradient directions without requiring per-example gradients, they can be used to train models at scale. Experimentally, we find that they indeed greatly reduce overfitting (and memorization) and thus provide the first convincing evidence that CGH holds at scale. We also propose a new test of CGH that does not depend on adding noise to training labels or on suppressing weak gradient directions. Using the intuition behind CGH, we posit that the examples learned early in the training process (i.e., "easy" examples) are precisely those that have more in common with other training examples. Therefore, as per CGH, the easy examples should generalize better amongst themselves than the hard examples amongst themselves. We validate this hypothesis with detailed experiments, and believe that it provides further orthogonal evidence for CGH.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.