Explicit Effect Subtyping

28 May 2020  ·  Georgios Karachalias, Matija Pretnar, Amr Hany Saleh, Stien Vanderhallen, Tom Schrijvers ·

As popularity of algebraic effects and handlers increases, so does a demand for their efficient execution. Eff, an ML-like language with native support for handlers, has a subtyping-based effect system on which an effect-aware optimizing compiler could be built. Unfortunately, in our experience, implementing optimizations for Eff is overly error-prone because its core language is implicitly-typed, making code transformations very fragile. To remedy this, we present an explicitly-typed polymorphic core calculus for algebraic effect handlers with a subtyping-based type-and-effect system. It reifies appeals to subtyping in explicit casts with coercions that witness the subtyping proof, quickly exposing typing bugs in program transformations. Our typing-directed elaboration comes with a constraint-based inference algorithm that turns an implicitly-typed Eff-like language into our calculus. Moreover, all coercions and effect information can be erased in a straightforward way, demonstrating that coercions have no computational content. Additionally, we present a monadic translation from our calculus into a pure language without algebraic effects or handlers, using the effect information to introduce monadic constructs only where necessary.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper