Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee

23 Oct 2022  ·  Tianyi Lin, Panayotis Mertikopoulos, Michael I. Jordan ·

We propose and analyze exact and inexact regularized Newton-type methods for finding a global saddle point of \emph{convex-concave} unconstrained min-max optimization problems. Compared to first-order methods, our understanding of second-order methods for min-max optimization is relatively limited, as obtaining global rates of convergence with second-order information is much more involved. In this paper, we examine how second-order information can be used to speed up extra-gradient methods, even under inexactness. Specifically, we show that the proposed algorithms generate iterates that remain within a bounded set and the averaged iterates converge to an $\epsilon$-saddle point within $O(\epsilon^{-2/3})$ iterations in terms of a restricted gap function. Our algorithms match the theoretically established lower bound in this context and our analysis provides a simple and intuitive convergence analysis for second-order methods without any boundedness requirements. Finally, we present a series of numerical experiments on synthetic and real data that demonstrate the efficiency of the proposed algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods