Exploiting Edge-Oriented Reasoning for 3D Point-based Scene Graph Analysis

CVPR 2021  ·  Chaoyi Zhang, Jianhui Yu, Yang song, Weidong Cai ·

Scene understanding is a critical problem in computer vision. In this paper, we propose a 3D point-based scene graph generation ($\mathbf{SGG_{point}}$) framework to effectively bridge perception and reasoning to achieve scene understanding via three sequential stages, namely scene graph construction, reasoning, and inference... Within the reasoning stage, an EDGE-oriented Graph Convolutional Network ($\texttt{EdgeGCN}$) is created to exploit multi-dimensional edge features for explicit relationship modeling, together with the exploration of two associated twinning interaction mechanisms between nodes and edges for the independent evolution of scene graph representations. Overall, our integrated $\mathbf{SGG_{point}}$ framework is established to seek and infer scene structures of interest from both real-world and synthetic 3D point-based scenes. Our experimental results show promising edge-oriented reasoning effects on scene graph generation studies. We also demonstrate our method advantage on several traditional graph representation learning benchmark datasets, including the node-wise classification on citation networks and whole-graph recognition problems for molecular analysis. read more

PDF Abstract CVPR 2021 PDF CVPR 2021 Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here