Exploiting High-Level Semantics for No-Reference Image Quality Assessment of Realistic Blur Images

18 Oct 2018  ·  Dingquan Li, Tingting Jiang, Ming Jiang ·

To guarantee a satisfying Quality of Experience (QoE) for consumers, it is required to measure image quality efficiently and reliably. The neglect of the high-level semantic information may result in predicting a clear blue sky as bad quality, which is inconsistent with human perception. Therefore, in this paper, we tackle this problem by exploiting the high-level semantics and propose a novel no-reference image quality assessment method for realistic blur images. Firstly, the whole image is divided into multiple overlapping patches. Secondly, each patch is represented by the high-level feature extracted from the pre-trained deep convolutional neural network model. Thirdly, three different kinds of statistical structures are adopted to aggregate the information from different patches, which mainly contain some common statistics (i.e., the mean\&standard deviation, quantiles and moments). Finally, the aggregated features are fed into a linear regression model to predict the image quality. Experiments show that, compared with low-level features, high-level features indeed play a more critical role in resolving the aforementioned challenging problem for quality estimation. Besides, the proposed method significantly outperforms the state-of-the-art methods on two realistic blur image databases and achieves comparable performance on two synthetic blur image databases.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.