Exploiting N-Best Hypotheses to Improve an SMT Approach to Grammatical Error Correction

1 Jun 2016Duc Tam HoangShamil ChollampattHwee Tou Ng

Grammatical error correction (GEC) is the task of detecting and correcting grammatical errors in texts written by second language learners. The statistical machine translation (SMT) approach to GEC, in which sentences written by second language learners are translated to grammatically correct sentences, has achieved state-of-the-art accuracy... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet