Exploiting Parallelism Opportunities with Deep Learning Frameworks

13 Aug 2019  ·  Yu Emma Wang, Carole-Jean Wu, Xiaodong Wang, Kim Hazelwood, David Brooks ·

State-of-the-art machine learning frameworks support a wide variety of design features to enable a flexible machine learning programming interface and to ease the programmability burden on machine learning developers. Identifying and using a performance-optimal setting in feature-rich frameworks, however, involves a non-trivial amount of performance profiling efforts and often relies on domain-specific knowledge. This paper takes a deep dive into analyzing the performance impact of key design features in a machine learning framework and quantifies the role of parallelism. The observations and insights distill into a simple set of guidelines that one can use to achieve much higher training and inference speedup. Across a diverse set of real-world deep learning models, the evaluation results show that the proposed performance tuning guidelines outperform the Intel and TensorFlow recommended settings by 1.29x and 1.34x, respectively.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here