Exploiting Token and Path-based Representations of Code for Identifying Security-Relevant Commits

Public vulnerability databases such as CVE and NVD account for only 60% of security vulnerabilities present in open-source projects, and are known to suffer from inconsistent quality. Over the last two years, there has been considerable growth in the number of known vulnerabilities across projects available in various repositories such as NPM and Maven Central. Such an increasing risk calls for a mechanism to infer the presence of security threats in a timely manner. We propose novel hierarchical deep learning models for the identification of security-relevant commits from either the commit diff or the source code for the Java classes. By comparing the performance of our model against code2vec, a state-of-the-art model that learns from path-based representations of code, and a logistic regression baseline, we show that deep learning models show promising results in identifying security-related commits. We also conduct a comparative analysis of how various deep learning models learn across different input representations and the effect of regularization on the generalization of our models.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods