A Framework for Behavioral Biometric Authentication using Deep Metric Learning on Mobile Devices

26 May 2020  ·  Cong Wang, Yanru Xiao, Xing Gao, Li Li, Jun Wang ·

Mobile authentication using behavioral biometrics has been an active area of research. Existing research relies on building machine learning classifiers to recognize an individual's unique patterns. However, these classifiers are not powerful enough to learn the discriminative features. When implemented on the mobile devices, they face new challenges from the behavioral dynamics, data privacy and side-channel leaks. To address these challenges, we present a new framework to incorporate training on battery-powered mobile devices, so private data never leaves the device and training can be flexibly scheduled to adapt the behavioral patterns at runtime. We re-formulate the classification problem into deep metric learning to improve the discriminative power and design an effective countermeasure to thwart side-channel leaks by embedding a noise signature in the sensing signals without sacrificing too much usability. The experiments demonstrate authentication accuracy over 95% on three public datasets, a sheer 15% gain from multi-class classification with less data and robustness against brute-force and side-channel attacks with 99% and 90% success, respectively. We show the feasibility of training with mobile CPUs, where training 100 epochs takes less than 10 mins and can be boosted 3-5 times with feature transfer. Finally, we profile memory, energy and computational overhead. Our results indicate that training consumes lower energy than watching videos and slightly higher energy than playing games.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here