Exploring Generalization in Deep Learning

NeurIPS 2017  ·  Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, Nathan Srebro ·

With a goal of understanding what drives generalization in deep networks, we consider several recently suggested explanations, including norm-based control, sharpness and robustness. We study how these measures can ensure generalization, highlighting the importance of scale normalization, and making a connection between sharpness and PAC-Bayes theory... We then investigate how well the measures explain different observed phenomena. read more

PDF Abstract NeurIPS 2017 PDF NeurIPS 2017 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here