Exploring Semantic Incrementality with Dynamic Syntax and Vector Space Semantics

1 Nov 2018  ·  Mehrnoosh Sadrzadeh, Matthew Purver, Julian Hough, Ruth Kempson ·

One of the fundamental requirements for models of semantic processing in dialogue is incrementality: a model must reflect how people interpret and generate language at least on a word-by-word basis, and handle phenomena such as fragments, incomplete and jointly-produced utterances. We show that the incremental word-by-word parsing process of Dynamic Syntax (DS) can be assigned a compositional distributional semantics, with the composition operator of DS corresponding to the general operation of tensor contraction from multilinear algebra. We provide abstract semantic decorations for the nodes of DS trees, in terms of vectors, tensors, and sums thereof; using the latter to model the underspecified elements crucial to assigning partial representations during incremental processing. As a working example, we give an instantiation of this theory using plausibility tensors of compositional distributional semantics, and show how our framework can incrementally assign a semantic plausibility measure as it parses phrases and sentences.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here