Exploring Stronger Feature for Temporal Action Localization

Temporal action localization aims to localize starting and ending time with action category. Limited by GPU memory, mainstream methods pre-extract features for each video. Therefore, feature quality determines the upper bound of detection performance. In this technical report, we explored classic convolution-based backbones and the recent surge of transformer-based backbones. We found that the transformer-based methods can achieve better classification performance than convolution-based, but they cannot generate accuracy action proposals. In addition, extracting features with larger frame resolution to reduce the loss of spatial information can also effectively improve the performance of temporal action localization. Finally, we achieve 42.42% in terms of mAP on validation set with a single SlowFast feature by a simple combination: BMN+TCANet, which is 1.87% higher than the result of 2020's multi-model ensemble. Finally, we achieve Rank 1st on the CVPR2021 HACS supervised Temporal Action Localization Challenge.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here