Exploring the Imposition of Synaptic Precision Restrictions For Evolutionary Synthesis of Deep Neural Networks

1 Jul 2017Mohammad Javad ShafieeFrancis LiAlexander Wong

A key contributing factor to incredible success of deep neural networks has been the significant rise on massively parallel computing devices allowing researchers to greatly increase the size and depth of deep neural networks, leading to significant improvements in modeling accuracy. Although deeper, larger, or complex deep neural networks have shown considerable promise, the computational complexity of such networks is a major barrier to utilization in resource-starved scenarios... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet