Exponential Separations in Local Differential Privacy

1 Jul 2019  ·  Matthew Joseph, Jieming Mao, Aaron Roth ·

We prove a general connection between the communication complexity of two-player games and the sample complexity of their multi-player locally private analogues. We use this connection to prove sample complexity lower bounds for locally differentially private protocols as straightforward corollaries of results from communication complexity. In particular, we 1) use a communication lower bound for the hidden layers problem to prove an exponential sample complexity separation between sequentially and fully interactive locally private protocols, and 2) use a communication lower bound for the pointer chasing problem to prove an exponential sample complexity separation between $k$ round and $k+1$ round sequentially interactive locally private protocols, for every $k$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here