Exponentially Increasing the Capacity-to-Computation Ratio for Conditional Computation in Deep Learning

28 Jun 2014Kyunghyun ChoYoshua Bengio

Many state-of-the-art results obtained with deep networks are achieved with the largest models that could be trained, and if more computation power was available, we might be able to exploit much larger datasets in order to improve generalization ability. Whereas in learning algorithms such as decision trees the ratio of capacity (e.g., the number of parameters) to computation is very favorable (up to exponentially more parameters than computation), the ratio is essentially 1 for deep neural networks... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet