Extraction of clinical information from the non-invasive fetal electrocardiogram

27 May 2016  ·  Joachim Behar ·

Estimation of the fetal heart rate (FHR) has gained interest in the last century, low heart rate variability has been studied to identify intrauterine growth restricted fetuses (prepartum), and abnormal FHR patterns have been associated with fetal distress during delivery (intrapartum). Several monitoring techniques have been proposed for FHR estimation, including auscultation and Doppler ultrasound... This thesis focuses on the extraction of the non-invasive fetal electrocardiogram (NI-FECG) recorded from a limited set of abdominal sensors. The main challenge with NI-FECG extraction techniques is the low signal-to-noise ratio of the FECG signal on the abdominal mixture signal which consists of a dominant maternal ECG component, FECG and noise. However the NI-FECG offers many advantages over the alternative fetal monitoring techniques, the most important one being the opportunity to enable morphological analysis of the FECG which is vital for determining whether an observed FHR event is normal or pathological. In order to advance the field of NI-FECG signal processing, the development of standardised public databases and benchmarking of a number of published and novel algorithms was necessary. read more

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here