Extreme Dimension Reduction for Handling Covariate Shift

29 Nov 2017  ·  Fulton Wang, Cynthia Rudin ·

In the covariate shift learning scenario, the training and test covariate distributions differ, so that a predictor's average loss over the training and test distributions also differ. In this work, we explore the potential of extreme dimension reduction, i.e. to very low dimensions, in improving the performance of importance weighting methods for handling covariate shift, which fail in high dimensions due to potentially high train/test covariate divergence and the inability to accurately estimate the requisite density ratios. We first formulate and solve a problem optimizing over linear subspaces a combination of their predictive utility and train/test divergence within. Applying it to simulated and real data, we show extreme dimension reduction helps sometimes but not always, due to a bias introduced by dimension reduction.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here