Face Forgery Detection by 3D Decomposition

Detecting digital face manipulation has attracted extensive attention due to fake media's potential harms to the public. However, recent advances have been able to reduce the forgery signals to a low magnitude. Decomposition, which reversibly decomposes an image into several constituent elements, is a promising way to highlight the hidden forgery details. In this paper, we consider a face image as the production of the intervention of the underlying 3D geometry and the lighting environment, and decompose it in a computer graphics view. Specifically, by disentangling the face image into 3D shape, common texture, identity texture, ambient light, and direct light, we find the devil lies in the direct light and the identity texture. Based on this observation, we propose to utilize facial detail, which is the combination of direct light and identity texture, as the clue to detect the subtle forgery patterns. Besides, we highlight the manipulated region with a supervised attention mechanism and introduce a two-stream structure to exploit both face image and facial detail together as a multi-modality task. Extensive experiments indicate the effectiveness of the extra features extracted from the facial detail, and our method achieves the state-of-the-art performance.

PDF Abstract CVPR 2021 PDF CVPR 2021 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here