Face Spoofing Detection by Fusing Binocular Depth and Spatial Pyramid Coding Micro-Texture Features

13 Mar 2018  ·  Xiao Song, Xu Zhao, Tianwei Lin ·

Robust features are of vital importance to face spoofing detection, because various situations make feature space extremely complicated to partition. Thus in this paper, two novel and robust features for anti-spoofing are proposed. The first one is a binocular camera based depth feature called Template Face Matched Binocular Depth (TFBD) feature. The second one is a high-level micro-texture based feature called Spatial Pyramid Coding Micro-Texture (SPMT) feature. Novel template face registration algorithm and spatial pyramid coding algorithm are also introduced along with the two novel features. Multi-modal face spoofing detection is implemented based on these two robust features. Experiments are conducted on a widely used dataset and a comprehensive dataset constructed by ourselves. The results reveal that face spoofing detection with the fusion of our proposed features is of strong robustness and time efficiency, meanwhile outperforming other state-of-the-art traditional methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here