Faceness-Net: Face Detection through Deep Facial Part Responses

29 Jan 2017  ·  Shuo Yang, Ping Luo, Chen Change Loy, Xiaoou Tang ·

We propose a deep convolutional neural network (CNN) for face detection leveraging on facial attributes based supervision. We observe a phenomenon that part detectors emerge within CNN trained to classify attributes from uncropped face images, without any explicit part supervision. The observation motivates a new method for finding faces through scoring facial parts responses by their spatial structure and arrangement. The scoring mechanism is data-driven, and carefully formulated considering challenging cases where faces are only partially visible. This consideration allows our network to detect faces under severe occlusion and unconstrained pose variations. Our method achieves promising performance on popular benchmarks including FDDB, PASCAL Faces, AFW, and WIDER FACE.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here