FACMIC: Federated Adaptative CLIP Model for Medical Image Classification

8 Oct 2024  ·  Yihang Wu, Christian Desrosiers, Ahmad Chaddad ·

Federated learning (FL) has emerged as a promising approach to medical image analysis that allows deep model training using decentralized data while ensuring data privacy. However, in the field of FL, communication cost plays a critical role in evaluating the performance of the model. Thus, transferring vision foundation models can be particularly challenging due to the significant resource costs involved. In this paper, we introduce a federated adaptive Contrastive Language Image Pretraining CLIP model designed for classification tasks. We employ a light-weight and efficient feature attention module for CLIP that selects suitable features for each client's data. Additionally, we propose a domain adaptation technique to reduce differences in data distribution between clients. Experimental results on four publicly available datasets demonstrate the superior performance of FACMIC in dealing with real-world and multisource medical imaging data. Our codes are available at https://github.com/AIPMLab/FACMIC.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods