FactPEGASUS: Factuality-Aware Pre-training and Fine-tuning for Abstractive Summarization

NAACL 2022  ·  David Wan, Mohit Bansal ·

We present FactPEGASUS, an abstractive summarization model that addresses the problem of factuality during pre-training and fine-tuning: (1) We augment the sentence selection strategy of PEGASUS's (Zhang et al., 2020) pre-training objective to create pseudo-summaries that are both important and factual; (2) We introduce three complementary components for fine-tuning. The corrector removes hallucinations present in the reference summary, the contrastor uses contrastive learning to better differentiate nonfactual summaries from factual ones, and the connector bridges the gap between the pre-training and fine-tuning for better transfer of knowledge. Experiments on three downstream tasks demonstrate that FactPEGASUS substantially improves factuality evaluated by multiple automatic metrics and humans. Our thorough analysis suggests that FactPEGASUS is more factual than using the original pre-training objective in zero-shot and few-shot settings, retains factual behavior more robustly than strong baselines, and does not rely entirely on becoming more extractive to improve factuality. Our code and data are publicly available at: https://github.com/meetdavidwan/factpegasus

PDF Abstract NAACL 2022 PDF NAACL 2022 Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.