Fair k-Means Clustering

17 Jun 2020Mehrdad GhadiriSamira SamadiSantosh Vempala

We show that the popular $k$-means clustering algorithm (Lloyd's heuristic), used for a variety of scientific data, can result in outcomes that are unfavorable to subgroups of data (e.g., demographic groups). Such biased clusterings can have deleterious implications for human-centric applications such as resource allocation... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet