Fairness Violations and Mitigation under Covariate Shift

2 Nov 2019  ·  Harvineet Singh, Rina Singh, Vishwali Mhasawade, Rumi Chunara ·

We study the problem of learning fair prediction models for unseen test sets distributed differently from the train set. Stability against changes in data distribution is an important mandate for responsible deployment of models. The domain adaptation literature addresses this concern, albeit with the notion of stability limited to that of prediction accuracy. We identify sufficient conditions under which stable models, both in terms of prediction accuracy and fairness, can be learned. Using the causal graph describing the data and the anticipated shifts, we specify an approach based on feature selection that exploits conditional independencies in the data to estimate accuracy and fairness metrics for the test set. We show that for specific fairness definitions, the resulting model satisfies a form of worst-case optimality. In context of a healthcare task, we illustrate the advantages of the approach in making more equitable decisions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods