Fairness in Multi-Agent Sequential Decision-Making

NeurIPS 2014  ·  Chongjie Zhang, Julie A. Shah ·

We define a fairness solution criterion for multi-agent decision-making problems, where agents have local interests. This new criterion aims to maximize the worst performance of agents with consideration on the overall performance. We develop a simple linear programming approach and a more scalable game-theoretic approach for computing an optimal fairness policy. This game-theoretic approach formulates this fairness optimization as a two-player, zero-sum game and employs an iterative algorithm for finding a Nash equilibrium, corresponding to an optimal fairness policy. We scale up this approach by exploiting problem structure and value function approximation. Our experiments on resource allocation problems show that this fairness criterion provides a more favorable solution than the utilitarian criterion, and that our game-theoretic approach is significantly faster than linear programming.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here